

Tetrahedron Letters 41 (2000) 4591-4595

TETRAHEDRON LETTERS

Synthesis of optically active partly *gem*-difluorinated allylic alcohols via [2,3]-Wittig rearrangements and lipase-catalyzed reaction

Toshiyuki Itoh,^{a,*} Kazutoshi Kudo,^a Naoko Tanaka,^a Kohei Sakabe,^a Yumiko Takagi^b and Hiroshi Kihara^b

^aDepartment of Chemistry, Faculty of Education, Okayama University, Okayama 700-8530, Japan ^bDepartment of Natural Science, Hyogo University of Teacher Education, Yashiro, Hyogo 673-1494, Japan

Received 6 March 2000; revised 5 April 2000; accepted 14 April 2000

Abstract

[2,3]-Wittig rearrangement of 1,1,2-trifluoroallylic ethers gave five types of novel 4,4,5-trifluoroalk-1,5-dien-3-ols. The rearrangement reaction gave the alcohols with perfect (E)*-selection over the newly created olefin bond for two substrates. Lipase-catalyzed optical resolution of 4,4,5-trifluoroalk-1,5-dien-3-ols was successfully performed to afford optically active partly *gem*-difluorinated allylic alcohols for the first time. \bigcirc 2000 Elsevier Science Ltd. All rights reserved.

Keywords: [2,3]-Wittig rearrangement; partly *gem*-difluorinated allylic alcohols; lipase-catalyzed reaction; asymmetric synthesis.

The substitution of two fluorine atoms on organic molecules is expected to alter both chemical reactivity and biological activity due to the strong electron-withdrawing nature of fluorine.¹ The synthesis of partly *gem*-difluorinated compounds remains a significant challenge to synthetic organic chemists.^{1–3} Herein, we report that [2,3]-Wittig rearrangement of 1,1,2-trifluoroallylic ether **1** gave new types of partly *gem*-difluorinated allylic alcohols: 4,4,5-trifluoroalk-1,5-dien-3-ols (**2**) in a highly stereoselective fashion, and optical resolution of these allylic alcohols was accomplished via lipase-catalyzed reactions (Scheme 1).

Scheme 1.

^{*} Corresponding author. Fax: +81-86-251-7639; e-mail: titoh@cc.okayama-u.ac.jp

The starting 1,1,2-trifluoroallylic ethers 1 were prepared as follows (Eq. (1)): 1,1,2-Trifluoro-1alkene-3-ols 3 were synthesized and subsequent conversion to allylic ethers 1 was accomplished by proper choice of the allylation protocol which was developed by Percy et al.² Tertiary alcohols 3 were treated with sodium hydride as base and subsequent reaction with allylbromide in a mixed solvent (THF:DMF = 5:1) gave allylic ether 1 in good yield (Method A). In contrast, use of a phase-transfer catalyst-mediated reaction condition (Method B) ⁴ was essential for allylic ethers derived from secondary alcohols because of the high acidity of the proton at the 3-position of alcohol 3 (Entries 9, 10 and 13, Table 1). Eight types of novel allylic ethers 1 have been synthesized in good or modest yields, except for highly bulky allylic alcohol 3f (R¹, R² = c-hexyl) (Entry 12).

 Table 1

 Synthesis of fluoroallylic alcohols 2 via [2,3]-Wittig rearrangements

Entry	Starting alcohol	R ¹	R ²	Method ^a	Yield of 1(%)	Base ^b	Yield of 2 (%)	(<i>E</i>)*- 2 : (<i>Z</i>)*- 2 ^c
1	3a	Ph	Me	А	53	BuLi (2 eq.)	25	72:28
2	3a	Ph	Me	Α	53	LDA (1 eq.)	19	73:27
3	3a	Ph	Me	Α	53	LDA (2 eq.)	57	70:30
4	3a	Ph	Me	Α	53	LTMP (2 eq.)	63	63:37
5	3b	Me	Me	Α	70	LDA (2 eq.)	35	
6	3b	Me	Me	Α	70	LTMP (2 eq.)	75	
7	3c	Et	Et	Α	79	LDA (2 eq.)	66	
8	3c	Et	Et	Α	79	LTMP (2 eq.)	64	
9	3d	Ph(CH ₂) ₂	Н	В	66	LDA (2 eq.)	53	>99:<1
10	3e	n-C ₁₀ H ₂₁	н	В	59	LDA (2 eq.)	55	>99:<1
11	3f	c-Hex	c-Hex	А	0 ^d			
12	3g	PhCH ₂	PhCH ₂	А	60	LDA (2 eq.)	0 ^d	
13	3h	Ph	Н	В	62	LDA (2 eq.)	0 ^d	
14	3i	-(CH ₂) ₅ -		А	53	LDA (2 eq.)	0 ^d	

a) Method A: NaH, allyl bromide, THF-DMF. Method B: allyl bromide, $(n-Bu)_4N$ •HSO₄, 50%NaOH aq. CH₂Cl₂. b) Use of 2 eq. of LDA or LTMP gave better results than n-BuLi or leq. of LDA. c) Determined by capillary GC analysis (MS-25M). Because fluorine atom is superior to carbon atom, this nomenclature does not follow the IUPAC rule. We adapted this nomenclature to discuss the stereochemistry of [2,3]-Wittig rearrangements. (*E*)* and (*Z*)* corresond to (*Z*) and (*E*), respectively. d) Neither the desired compound nor the starting material was obtained.

It was found that proper choice of the base was essential for the next [2,3]-Wittig rearrangement (Eq. (1)); lithium diisopropylamide (LDA) or lithium 2,2,6,6-tetramethylpiperazide (LTMP) gave good results and the initial base treatment of allylic ether **1** should be performed at -100° C. Unidentified polymerized products were formed when the base treatment was carried out at an elevated temperature over -80° C. Five types of novel fluorinated alcohols **2** were thus obtained in satisfactory yield (Entries 1–10), while reactions of three types of allylic ethers were unsuccessful (Entries 12–14) (Table 1). It has been reported that [2,3]-Wittig rearrangement exhibits a high (*E*)-selectivity over the newly created olefin bond.⁵ In fact, perfect (*E*)*-selective reaction (>99%) was achieved over the newly created olefin bond of **2d** and **2e** (Entries 9 and 10); no stereoisomer was detected by capillary GC analysis and the stereochemistry was confirmed by ¹H and ¹⁹F NMR analyses.⁶ However, the stereoselectivity was insufficient when allylic ether **1a** (R¹=Ph, R²=Me) was subjected to the reaction and no improvement in the (*E*)*-selectivity was observed by switching the base (Entries 1–4). For three types of allylic ethers, **1g**, **1h** and **1i**, no desired product was obtained and only unidentified polymerized products were produced, though we performed the reactions at various temperature conditions (Entries 12–14).

The synthetic value of lipase has been well-recognized because the reaction proceeds efficiently and selectively under mild conditions,⁷ so we decided to use lipase-catalyzed hydrolysis protocol for the preparation of optically active **2**. Initially, we tested lipase-catalyzed *trans*-esterification of (\pm) -6-ethyl-4,4,5-trifluorooct-1,5-dien-3-ol (**2c**) as a model compound. The reaction, however, was very slow due to lack of nucleophilicity of the hydroxyl group of **2c** by the electron-withdrawing nature of the difluoromethylene group at the 4-position, though the reaction exhibited perfect enantioselectivity. Fortunately, lipase-catalyzed hydrolysis of the corresponding acetate (\pm)-**4c** proceeded very successfully and optically pure **2c** was obtained in good yield (Eq. (2)).

Among eight commercially available lipases screened, four enzymes gave excellent results with lipase PS providing the best of these (Table 2, Entry 1).⁸ The absolute configuration of **2c** produced was assigned to be (*R*) based on the results of Mosher's modified method proposed by Kusumi et al.¹⁰ (Fig. 1).¹¹ It was found that all four enzymes preferred to hydrolyze (*R*)-alcohols for **2b**, **2c** and **2d**. Two types of partly diffuorinated allylic alcohols **2b** ($\mathbb{R}^1, \mathbb{R}^2 = \mathbb{M}e$) and **2c**, were thus obtained in optically pure form for the first time (Table 2), although results of the optical resolution of **2d** ($\mathbb{R}^1 = \mathbb{Ph}CH_2CH_2$, $\mathbb{R}^2 = \mathbb{H}$) remained at an insufficient level.

Figure 1. Assignment of the absolute configuration of 6-ethyl-4,4,5-trifluorooct-1,5-dien-3-ol (2c) obtained by lipasecatalyzed hydrolysis

In conclusion, new types of partly fluorinated allylic alcohols were synthesized in stereoselective fashion through [2,3]-Wittig rearrangements and successful optical resolution was accomplished by the lipase-catalyzed reaction. The present method affords a valuable means of preparing optically active partly fluorinated allylic alcohols. Further study of the scope and limitations of this reaction will make it even more beneficial.

Entry	/ R ¹	R ²	Lipase ^b	Time	%conv.	%ee of 2 (%yield)	%ee of 4 (%yield)	E ⁹
1	Et	Et	PCL	8	49	>99 ^c (38)	94 (42)	>750
2	Et	Et	CAL	1	37	>99 ^c (37)	59 (57)	>363
3	Et	Et	OF	3	28	>99 ^c (22)	39 (48)	>290
4	Et	Et	QL	15	45	>99 ^c (36)	81 (40)	>500
5	Me	Me	PCL	7.5	48	>99 ^c (36)	91 (54)	>645
6	Me	Me	CAL	0.5	42	>99 ^c (23)	73 (21)	>437
7	PhCH ₂ CH ₂	Н	PCL	8	64	21 (47)	38 (48)	2

Table 2
Lipase-catalyzed optical resolution of fluoroallylic alcohols ^a

a) The reaction was carried out in 0.1 M potassium phosphate buffer at pH 7.2 and enantiomeric excess was determined by capillary GC analysis using Chiraldex-GTa (ϕ 0.25 mm x 20 M, He, 70 °C). b) PCL: *Pseudomonas cepacia* (Amano); CAL: *Candida antractica* (Novo), OF: *Candida rugosa* (Meito), QL: *Alcaligenes* sp. (Meito). c) No isomer was detected by the capillary GC analysis.

Acknowledgements

The authors are grateful to the SC-NMR Laboratory of Okayama University for the NMR measurements. They also thank Amano Pharmaceutical Co., Ltd. and Meito Sangyo Co., Ltd. for providing lipases.

References

- 1. For reviews, see: (a) Kitazume, T.; Yamazaki, T. Topics in Current Chemistry; Springer Verlag, 1997; Vol. 193, pp. 91–130. (b) Percy, J. M. Top. Curr. Chem. 1997, 193, 131.
- For [2,3]-Wittig rearrangements of difluoroallylic alkoxyacetates, see: Patel, S. T.; Percy, J. M.; Wilkes, R. D. J. Org. Chem. 1996, 61, 166.
- 3. For examples of the synthesis of difluorinated compounds via rearrangement reactions, see: (a) Balnaves, A. S.; Gelbrich, T.; Hursthouse, M. B.; Light, M. E.; Palmer, M. J.; Percy, J. M. J. Chem. Soc., Perkin Trans. 1 1999, 2525. (b) Ito, H.; Sato, A.; Kobayashi, T.; Taguchi, T. Chem. Commun. 1998, 2441, and references cited therein. We have synthesized many types of partly gem-difluorinated compounds via radical reaction protocol: Itoh, T.; Sakabe, K.; Kudo, K.; Ohara, H.; Takagi, Y.; Kihara, H.; Zagatti, P.; Renou, M. J. Org. Chem. 1999, 64, 252.
- 4. Patel, S. T.; Percy, J. M.; Wilkes, R. D. Tetrahedron 1995, 51, 9201.
- For a review, see: Nakai, T.; Mikami, K. Org. React. 1994, 46, 105. For a recent nice example for discussing the stereochemistry of [2,3]-Wittig rearrangements, see: Tomooka, K.; Igarashi, T.; Kishi, N.; Nakai, T. Tetrahedron Lett. 1999, 40, 6257, and references cited therein.
- 6. Synthesis of 6-ethyl-4,4,5-trifluorooct-1,5-dien-3-ol (**2c**): To a THF (150 ml) solution of LDA (44.0 mmol) was added a THF (50 ml) solution of **1c** (4.16 g, 20.0 mmol) at -100° C dropwise for 40 min. The mixture was then allowed to warm to rt with stirring for 12 h. The reaction was quenched by the addition of a saturated NH₄Cl aqueous solution and extracted with ether. The organic layers were dried (MgSO₄), evaporated, and chromatographed on silica gel flash column to afford **2c** (2.83 g, 13.6 mmol) in 68% yield: bp 90°C/10 torr (Kugelrohr); *R*_f 0.4 (hexane:ethyl acetate, 7:1); ¹H NMR (200 MHz, CDCl₃, d) 1.03 (6H, t, J = 7.5 Hz), 2.10–2.23 (4H, m), 2.38 (1H, br s), 4.40–4.55 (1H, m), 5.39 (1H, d, J = 10.4 Hz), 5.49 (1H, st, J = 17.3, 1.5 Hz), 5.84–6.01 (1H, m); ¹³C NMR (50 MHz, CDCl₃, ppm) 12.4, 13.3, 21.0 (q, J_{C-F}=4.4 Hz), 21.9 (d, J_{C-F}=8.5 Hz), 73.3 (t, J_{C-F}=28.4 Hz), 117.5 (dt, J_{C-F}=247.6, 40.4 Hz), 119.8, 130.0 (d, J_{C-F}=10.8 Hz), 131.8 (t, J_{C-F}=2.8 Hz), 144.6 (dt, J_{C-F}=241.8, 31.2 Hz); ¹⁹F NMR (188 MHz, CDCl₃, C₆F₆) 32.20 (1F, br s), 51.54 (2F, ddd, J=23.1, 20.7, 12.2 Hz); IR (neat, cm⁻¹) 3401, 2975, 1691 and 1462.

- For a review, see: Wong, C. H.; Whitesides, G. M. *Enzymes in Synthetic Organic Chemistry*; Baldwin, J. E.; Magnus, P. D., Eds. Tetrahedron Organic Chemistry Series, Vol. 12. Pergamon, 1994.
- 8. The asymmetric hydrolysis of (±)-4c was typically carried out as follows: A mixture of 4c (1.0 mmol) and lipase PS (50 wt% towards the substrate) in a phosphate buffer solution (10 ml, 0.1 M at pH 7.2) was stirred at 35°C (Eq. (2)). The alcohol 2c produced was extracted with ethyl acetate and purified by silica gel flash column chromatography (hexane:ethyl acetate, 5:1 to 2:1). Compounds 2c and 4c were obtained in 38 and 43%, respectively. Enantiomeric excess of alcohol (+)-2c ($[\alpha]_D^{23}$ +14.63 (*c* 0.75, CHCl₃)) produced was determined by capillary GC analysis using the chiral phase column (Chiraldex G-Ta) as >99% ee because no signal of the enantiomer was observed using chiral column (Chiraldex G-Ta). Acetate (-)-4c ($[\alpha]_D^{23}$ -5.8 (*c* 1.23, CHCl₃)) unreacted was determined as 94% ee. Retention times on GC analyses of 2c and 4c are summarized as follows: Chiraldex G-Ta, ϕ 0.25 mm×20 m, carrier gas: He 40 ml/min. Temp: 70°C, inlet pressure: 1.35 Kg/cm², amount 400 ng, detection: FID; compound 2c: $Rt_{(R)}$ =33.0 min, $Rt_{(S)}$ =36.5 min; compound 4c: $Rt_{(S)}$ =19.0 min, $R_{(R)}$ =20.6 min.
- Chen, C.-S.; Fujimoto, Y.; Girdauskas, G.; Sih, C. J. J. Am. Chem. Soc. 1982, 102, 7294; Chen, C.-S.; Wu, S.-H.; Girdauskas, G.; Sih, C. J. J. Am. Chem. Soc. 1987, 109, 2812.
- 10. Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092.
- 11. (*R*)- and (*S*)- α -Methoxy- α -(trifluoromethyl)phenylacetic (MTPA) esters (*R*)-**5c** and (*S*)-**5c** showed positive chemical shift differences ($\Delta \delta = \delta S \delta R$) for protons on C-1 and C-2, while negative chemical shift differences ($\Delta \delta = \delta S \delta R$) for fluorine atoms on C-4 and C-5, and for protons on C-8 were observed (Fig. 1). The same chemical shift change tendency was observed for all three compounds **2b**, **2c** and **2d**.