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Abstract

[2,3]-Wittig rearrangement of 1,1,2-tri¯uoroallylic ethers gave ®ve types of novel 4,4,5-tri¯uoroalk-1,5-
dien-3-ols. The rearrangement reaction gave the alcohols with perfect (E)*-selection over the newly created
ole®n bond for two substrates. Lipase-catalyzed optical resolution of 4,4,5-tri¯uoroalk-1,5-dien-3-ols was
successfully performed to a�ord optically active partly gem-di¯uorinated allylic alcohols for the ®rst time.
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The substitution of two ¯uorine atoms on organic molecules is expected to alter both chemical
reactivity and biological activity due to the strong electron-withdrawing nature of ¯uorine.1 The
synthesis of partly gem-di¯uorinated compounds remains a signi®cant challenge to synthetic
organic chemists.1ÿ3 Herein, we report that [2,3]-Wittig rearrangement of 1,1,2-tri¯uoroallylic
ether 1 gave new types of partly gem-di¯uorinated allylic alcohols: 4,4,5-tri¯uoroalk-1,5-dien-3-
ols (2) in a highly stereoselective fashion, and optical resolution of these allylic alcohols was
accomplished via lipase-catalyzed reactions (Scheme 1).
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Scheme 1.
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The starting 1,1,2-tri¯uoroallylic ethers 1 were prepared as follows (Eq. (1)): 1,1,2-Tri¯uoro-1-
alkene-3-ols 3 were synthesized and subsequent conversion to allylic ethers 1 was accomplished
by proper choice of the allylation protocol which was developed by Percy et al.2 Tertiary alcohols
3 were treated with sodium hydride as base and subsequent reaction with allylbromide in a mixed
solvent (THF:DMF=5:1) gave allylic ether 1 in good yield (Method A). In contrast, use of a
phase-transfer catalyst-mediated reaction condition (Method B) 4 was essential for allylic ethers
derived from secondary alcohols because of the high acidity of the proton at the 3-position of
alcohol 3 (Entries 9, 10 and 13, Table 1). Eight types of novel allylic ethers 1 have been synthesized
in good or modest yields, except for highly bulky allylic alcohol 3f (R1,R2=c-hexyl) (Entry 12).

�1�

It was found that proper choice of the base was essential for the next [2,3]-Wittig rearrange-
ment (Eq. (1)); lithium diisopropylamide (LDA) or lithium 2,2,6,6-tetramethylpiperazide (LTMP)
gave good results and the initial base treatment of allylic ether 1 should be performed at ^100�C.
Unidenti®ed polymerized products were formed when the base treatment was carried out at an
elevated temperature over ^80�C. Five types of novel ¯uorinated alcohols 2 were thus obtained in

Table 1
Synthesis of ¯uoroallylic alcohols 2 via [2,3]-Wittig rearrangements
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satisfactory yield (Entries 1±10), while reactions of three types of allylic ethers were unsuccessful
(Entries 12±14) (Table 1). It has been reported that [2,3]-Wittig rearrangement exhibits a high (E)-
selectivity over the newly created ole®n bond.5 In fact, perfect (E)*-selective reaction (>99%)
was achieved over the newly created ole®n bond of 2d and 2e (Entries 9 and 10); no stereoisomer
was detected by capillary GC analysis and the stereochemistry was con®rmed by 1H and 19F
NMR analyses.6 However, the stereoselectivity was insu�cient when allylic ether 1a (R1=Ph,
R2=Me) was subjected to the reaction and no improvement in the (E)*-selectivity was observed
by switching the base (Entries 1±4). For three types of allylic ethers, 1g, 1h and 1i, no desired
product was obtained and only unidenti®ed polymerized products were produced, though we
performed the reactions at various temperature conditions (Entries 12±14).
The synthetic value of lipase has been well-recognized because the reaction proceeds e�ciently

and selectively under mild conditions,7 so we decided to use lipase-catalyzed hydrolysis protocol
for the preparation of optically active 2. Initially, we tested lipase-catalyzed trans-esteri®cation of
(þ)-6-ethyl-4,4,5-tri¯uorooct-1,5-dien-3-ol (2c) as a model compound. The reaction, however, was
very slow due to lack of nucleophilicity of the hydroxyl group of 2c by the electron-withdrawing
nature of the di¯uoromethylene group at the 4-position, though the reaction exhibited perfect
enantioselectivity. Fortunately, lipase-catalyzed hydrolysis of the corresponding acetate (þ)-4c
proceeded very successfully and optically pure 2c was obtained in good yield (Eq. (2)).

�2�

Among eight commercially available lipases screened, four enzymes gave excellent results with
lipase PS providing the best of these (Table 2, Entry 1).8 The absolute con®guration of 2c
produced was assigned to be (R) based on the results of Mosher's modi®ed method proposed by
Kusumi et al.10 (Fig. 1).11 It was found that all four enzymes preferred to hydrolyze (R)-alcohols
for 2b, 2c and 2d. Two types of partly di¯uorinated allylic alcohols 2b (R1,R2=Me) and 2c, were
thus obtained in optically pure form for the ®rst time (Table 2), although results of the optical
resolution of 2d (R1=PhCH2CH2, R

2=H) remained at an insu�cient level.

In conclusion, new types of partly ¯uorinated allylic alcohols were synthesized in stereoselective
fashion through [2,3]-Wittig rearrangements and successful optical resolution was accomplished
by the lipase-catalyzed reaction. The present method a�ords a valuable means of preparing
optically active partly ¯uorinated allylic alcohols. Further study of the scope and limitations of
this reaction will make it even more bene®cial.

Figure 1. Assignment of the absolute con®guration of 6-ethyl-4,4,5-tri¯uorooct-1,5-dien-3-ol (2c) obtained by lipase-

catalyzed hydrolysis
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